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Abstract. The Dugdale model for two equal, symmetrically situated coplanar circular arc cracks contained in an
infinite elastic perfectly-plastic plate is proposed. Biaxial loads are applied at the infinite boundary of the plate.
Consequently, the rims of the cracks open in Mode I and develop a plastic zone ahead of each of the cracks. These
plastic zones are then closed by the distribution of uniform normal closing stresses over the rims of the plastic
zones. Based on the complex-variable technique and the superposition principle, the solution for the above problem
is obtained. Closed-form analytic expressions are obtained for the determination of the sizes of the plastic zones
and the crack-opening displacement (COD) at the tip of the crack. Numerical studies are carried out to calculate
the load ratio (load applied at infinity/yield point stress applied at the rims of the plastic zones) required for the
closure of the plastic zones, for various radii of arc cracks and for various angles subtended by them at the centre.
The crack-opening displacement is also investigated with respect to these parameters.

Key words: cracks, plate, plasticity, elasticity, Dugdale.

1. Introduction

The problem of stress distribution in the neighbourhood of two equal collinear Griffith cracks
subjected to a uniform normal pressure was first considered by Wilmore [1]. Tranter [2]
extended this problem by varying pressure along the crack length. Panayasuk and Lozovoi
[3] determined the limiting stresses in an elastic plane with two unequal straight cracks under
tension perpendicular to the length of the cracks. The solution for the problem of two cracks
contained in an infinite plate under various loads was given by England and Green [4], Sneddon
and Srivastava [5], Lowengrub and Srivastava [6] and others.

A powerful complex-variable approach for arc cracks was developed by Muskhelishvili [7]
for the two-dimensional theory of elasticity. The stress-intensity factor at the tip of a circular
arc crack has been investigated by Panayasuk [8]et al.The problem of two coplanar arc cracks
under shear load has been considered by Fu and Keer [9] using integral equations. Thermal
stresses were calculated at the tips of the parallel circular arc cracks by Kassir and Bregman
[10]. The behaviour or two concentric circular arc cracks contained in an infinite plane under
anti-plane strain conditions has been analyzed by Jagannadham[11]. More recently, the elastic
problem for two circular arc cracks contained in an infinite elastic plate has been studied by
Piva and Viola [12] and Gdoutos [13]et al.

It is observed that, when a cracked sheet is subjected to tensile loads normal to the rims of
a straight crack, then it opens, developing plastic zones ahead of the tips of the crack. Dugdale
[14] suggested a model in which these plastic zones were closed by distributing cohesive yield
point stress over them. Theocaris [15] extended the Dugdale model to determine the size of
the plastic zones which develop ahead of the tips of two collinear straight cracks contained in
an infinite plate under conditions of plane stress.

JEFF. INTERPRINT: PIPS Nr.:144756 ENGI
engi413.tex; 6/08/1998; 13:58; v.7; p.1



360 R. R. Bhargava and Rajesh Kumar

In the present paper the following problem is investigated: Consider an infinite elastic
perfectly-plastic plate containing two coplanar, equal and symmetrically situated circular arc
cracks lying on the same circle. The infinite plate is subjected to a biaxial load applied at
infinity. Consequently, the rims of cracks open in Mode I developing plastic zones ahead of
the tips of the cracks. The plastic zones are, in turn, subjected to a cohesive yield point stress
which closes the plastic zones, thus arresting the cracks. Closed-form expressions are obtained
through the application of a complex variable technique. The size of the plastic zone and the
crack-face opening displacement are obtained.

Figure 1.Configuration. Figure 2.Configuration of Problem II.

2. Formulation and solution of the problem

A homogeneous, isotropic, elastic perfectly-plastic infinite plate, which occupies thexy-plane
(shown in Figure 1), contains two coplanar, equal and symmetrically situated circular arc cracks
L1 andL2. These cracks lie on a circle of radiusR with centre (0,0). The crackL1 lies from
a1(= R e�i�) tob1(= R ei�) and the crackL2 fromc1(= �R e�i�) tod1(= �Rei�) as shown
in Figure 1. The configuration so obtained is subjected to tensile biaxial stresses at infinity. On
account of these loads the plastic zones�1;�2;�3 and�4 develop ahead of the tipsa1; b1; c1

andd1 of the cracksL1 andL2, respectively. These plastic zones�1;�2;�3 and�4 lie in the
intervals[a; a1]f= [R e�i�; R e�i�]g; (b1; b)f= [R ei�; R ei�]g; [c; c1]f= [�R ei�;�R ei�]g,
and[d1; d]f= [�R ei�;�R e�i�]g, respectively. Each of the rims of the plastic zones�i(i =
1;2;3;4) is subjected to a uniform cohesive yield point stress,�ye, causing their closure. The
remaining part of the crack rims are stress free. The entire configuration of the problem is
depicted in Figure 2. The boundary conditions of the problem may be stated as follows:

(a) At infinity a uniform tensile biaxial stress,�1, is prescribed everywhere. Thus, a stress
�1 = Prr may be imagined to act on the rims of the circular boundary.

(b) The circular boundary may be considered stress free andPrr(= ��1) is applied at the
rims of the cracks.
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(c) The above stresses in (b) give rise to plastic zones�i(i = 1;2;3;4) at the tips of the
cracks.

The solution of the above problem is obtained by superposition of the solutions of two
component problems contributing to the stress singularity at the tips of the cracks. These
problems are designated as problem I and problem II. These are formulated and solved by a
complex-variable approach in the next two sections.

3. Problem I

This problem may be stated as follows. An infinite, homogeneous, isotropic, elastic perfectly-
plastic plate lying in thexy plane (as shown in Figure 2), contains two equal, coplanar and
symmetrically situated circular arc cracksC1f= �1 [ L1 [ �2g andC2f= �3 [ L2 [ �4g.
The crackC1 lies fromR e�i� to R ei� and the crackC2 from R ei� to�R e�i�. Boundary
conditions of the problem are:

(i) No stresses are acting at infinity.
(ii) The rims of the cracksC1 andC2 are opened by the application of a uniform tensile stress

�1.

The solution of this classical problem may be written down diirectly, when we use the
equations from (A6) to (A13) of Appendix A, withp(t) = �1 andq(t) = 0. The complex
potential�1(z), (the subscript 1 denotes the potential referring to problem I) may be written
as (withCi andDi such that�1(z) = o(z�2), for z !1)

�1(z) =
�1
"� 2

�
1� 1

X(z)
fz2 +R2(1� 2")g

�
; (1)

where

X(z) = f(z2 �R2 e�2i�)(z2 �R2 e2i�)g1=2; (2)

" = E=F; E = E(�=2; sin �); F = F (�=2; sin �) (2a)

are complete elliptic integrals of first and second kinds, respectively.

4. Problem II

A stress-free infinite, homogeneous, isotropic, elastic-perfectly plastic plate, situated in the
xy plane, contains two coplanar, equal and symmetrically situated circular arc cracksC1f=
�1[L1[�2g andC2f= �3[L2[�4g as shown in Figure 2. The cracksCi(i = 1;2)are formed
with the union of the actual crackLi(i = 1;2) and relevant plastic zones�i(i = 1;2;3;4)
existing ahead of crack tips. The boundary conditions of the problem are

(1) No stresses are acting at infinity (so,�2(z) = o(z�2); z !1).
(2) Each of the plastic zones�i(i = 1;2;3;4) is subjected to a uniform normal yield point

stress,�ye, as shown in Figure 2, and the remaining part of the rims of the cracksC1 and
C2 are stress free (yieldingp(t) = �ye; q(t) = 0, on�i).
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Using boundary condition (2) above and equation (A6) of the Appendix A, we obtain the
following Hilbert problems

�+ +2 (t) + 
�2 (t) = �ye; ��2 (t) + 
+2 (t) = �ye; on L =
4
'
1
�i; (3)

where any point onL is denoted byt = R ei�. The superscripts+ and� refer to the values
of the function att as it is approached from the ‘inner’(r < R) and from the ‘outer’(r > R)
region of the crack. Subscript 2 indicates that the potential refers to problem II.

The solution of Equations (3) for potential�2(z) may be obtained from the Equations (A8)
to (A13) of Appendix A.

�2(z) =
�ye

�iX(z)
[R2S1 + (z2 �R2 cos 2�)S2 + 2iX(z)S3]

+
1

2X(z)
(C0z

2 + C2) +
1
2D0; (4)

whereX(z) is given by Equation (2) and

S1 =
q
(e�2i� � e�2i�)(e�2i� � e2i�)�

q
(e2i� � e�2i�)(e2i� � e2i�); (5)

S2 = log

2
4
q
f(e�2i� � e�2i�)(e�2i� � e2i�)g+ e2i� � cos 2�q
f(e2i� � e2i�)(e2i� � e2i�)g+ e2i� � cos 2�

3
5

+ln

"
e2i� � cos 2�

e�2i� � cos 2�

#
; (6)

S3 = tan�1

s
(R2 e�2i� � z2)(e�2i� � e2i�)

(z2 �R2 e2i�)(e�2i� � e�2i�)

� tan�1

s
(R2 e�2i� � z2)(e2i� � e2i�)

(z2 �R2 e2i�)(e2i� � e�2i�)
� 1

2� (7)

C0 = 2�ye
(E �E1 + F1 � F )(F � F1)

(2F � 2F1 �E +E1)(E �E1)

�
1
�
(S5 � S4) +

S2

�i

�
E �E1

F � F1

��
; (8)

whereE = E(�=2; sin �) andF = F (�=2; sin �) are complete elliptic integrals as stated
in Equation (2a) andF1 = F (�; k) andE1 = E(�; k) are incomplete elliptic integrals of the
first and second kinds, respectively, and

� = sin�1
�

sin �
sin �

�
; k = sin �; (9)
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C2 = �2�yeR2

�i

�
(S1 � cos 2� � S2) +

(2E � 2E1 + F1 � F )

(F � F1)
� S2

+
(2E � 2E1 + F1 � F )(E �E1 + F1 � F )

(2F � 2F1�E +E1)(E �E1)

�
�
(S3 � S4)i+

(E �E1)

(F � F1)
S2

�#
: (10)

We also have

A2 =
(e2i� � e�2i�)

(e�2i� � e�2i�)
and B2 =

(e2i� � e2i�)

(e2i� � e�2i�)
; (11)

S4 = tan�1 A� tan�1 B � 1
2�; (12)

S5 = tan�1(e�2i�A)� tan�1(e�2i�B)� 1
2�; (13)

D0 = �C0� 2�ye
�i

(S2 + i2S4): (14)

We obtain the potential
2(z) by substituting for�2(z) andD0 from Equations (4) and
(14) in Equation (A8). Note thatq(t) in Equation (A11) is identically zero.

5. Plastic-zone size and crack-opening displacement

According to Dugdale’s strip yield model the stresses should remain finite at every point of
the body. Consequently, the stress-intensity factors at the tips of the cracks for problem I
(Section 3) and problem II (Section 4) must cancel each other. Because of the symmetry of the
problem it suffices to calculate the stress-intensity factors at only one tip of the cracks (say)
z = b = R ei�.

For the problem I, the normal stress-intensity factorK11 = Re[K] at the crack tipz = b =
R ei� is obtained by substituting�1(z) from Equation (1) in Equation (A14) of Appendix A

K11 = Re

2
4 �1

2� "

s
2�R

iei� sin 2�

n
e2i� + (1� 2")

o35 ; (15)

The normal stress-intensity factor,K21 = Re[K] at the tipz = b = R ei� is calculated
substituting�2(z) for �(z) from Equation (4) in Equation (A14), for the problem II. It is given
by the expression

K21 = Re

2
4
s

2�R
iei� sin 2�

�
�ye
�

(sin 2�S2 + iS1) +
1
2(C0 e2i� + C2=R

2)

�35 : (16)

At the tip z = b = R ei�, these stress intensity-factors balance each otheri.e.

K11 = K21 (17)
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giving a nonlinear equation in terms of parameters�1=�ye; �; � andR. For prescribed
�1=�ye; � andR the unknown� may be calculated from this equation. The plastic zone
length is then calculated asR(�� �)

The crack-opening displacement,ur, along the radius of the crack, at the actual crack tip
z = b1 = R ei� is obtained by substitution of�1(t), for problem 1, for�(t) in Equation (A17)
and then by integration.

The expression for COD(ur)1 atz = b1 = R ei� may finally be written as

(ur)1 = Re

"
��1 e�i�(�+ 1)

i�(2� ")
(E1 � "F1 � i sin � cos�)

#
: (18)

The subscript 1 after(ur) indicates the COD corresponds to the problem I. For problem
II, we obtain the crack-opening displacement,(ur)2, at the actual crack tipz = b1 = R ei�

of the crackL1 similarly by substituting the value of�2(t) from Equation (4) in (A17) and
integrating. We get

(ur)2 = Re
��R e�i�(�+ 1)

4i�

�
2
�i
�yefS1F1 + S2(2E1� F1 � 2i sin � cos�)

� cos 2� � S2 � F1g+ C0(2E1 � F1 � 2i sin � cos�) + F1C2=R
2
��
: (19)

The subscript 2 after(ur) denotes that the COD corresponds to problem II.
The Dugdale model crack-opening displacement for the original formulated problem in

Section 2 is then calculated as in [17] by

ur = (ur)1
�1
�ye

� (ur)2; (20)

substitution of(ur)1 from Equation (18) and(ur)2 from Equation (19),�1=�ye from Equation
(17). Note that for a plastic zone size, crack length and crack radius are taken as calculated
from the above equations.

6. Numerical calculation and results

We study the qualitative behaviour of load ratio (load applied at infinity/yield stress applied at
the plastic zones) and corresponding crack-opening displacement, using the above analysis.
Other parameters are crack radiusR, crack length, inter-crack distance (the arcual distance
between two neighbouring tips of the cracksL1 andL2) and plastic-zone size. Some illustrative
numerical examples are considered. The loaded boundary was taken at sufficiently large
distances. The results obtained are reported graphically.

Figure 3 shows the variation of the load ratio,�1=�ye, as the length of the plastic zone is
increased. The calculations are carried out for a fixed half crack angle,� = 45�. As expected,
the required load ratio increases with the increase in plastic-zone size. The four curves show
that, as the inter-crack distance is increased, the load required for closure reduces, as expected,
for a fixed plastic-zone size and crack length. This result matches with a similar type of study
carried out by Theocaris [16].
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Variation of the load ratio versus� (half-crack angle), for a fixed crack radius,R = 3,
is drawn in Figure 4. It may be noted that for a fixed plastic zone, as the crack length is
increased, the required load ratio for closure also reduces, as expected. It is also observed that
increasing the length of the crack, the load required for closure reduces for a fixed plastic
zone, as expected. If the size of plastic zone is increased, the load required for arresting the
cracks is also increased.

Figure 3.Variation of required load ratio versus plastic
zone as the inter crack distance increases, for half
crack angle� = 45�.

Figure 4.Variation of load ratio versus half crack angle
for radiusR = 3.

Figure 5.Variation of crack tip opening displacement
versus plastic zone forR = 3.

Figure 6.Variation of crack tip opening displacement
versus inter crack distance for fixed crack length� =
45�.

Figure 5 depicts that the crack will open more if the size of the plastic zone is increased.
The normalized crack opening displacement at the tipz = b of the crack has been plotted in
this figure forR = 3 and for three different values of� = 30�, 45� and 60�. We observe that,
increasing the half crack angle, the crack opens more for a prescribed load ratio.
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For a fixed half crack angle� = 45�, the variation of crack opening displacement (at the
tip z = b1 = R ei� of the crackL1) against inter-crack distance is plotted in Figure 6. It is
observed that, as the crack size is increased, it opens more for a fixed plastic-zone size. Also,
it may be noted that as plastic zone size is increased, the cracks open still more.

Appendix A

Complex variable formulation and solution beforeAccording to the complex-variable tech-
nique developed by Muskhelishvili [7], the stress componentsPij(i; j = r; �) may be
expressed in terms of two complex potentials�(z) and (z) as

Prr + iPr� = �(z) + �(z)� z�0(z)� (�z=z) (z); (A1)

�
@

@�
fei�(ur + iu�)g = 1

2izf��(z) � �(z) + z�0(z) + (�z=z) (z)g; (A2)

wherez = r ei�; � is the shear modulus,� = 3�4� for plane-strain case;� = (3��)=(1+�)
for the generalized plane-stress case and� is Poisson’s ratio. The bar over the function denotes
its complex conjugate.

For the problem of an infinite plate, cut along circular arcs of one and the same circle,
instead of (z), a new potential
(z), related to�(z) and (z), is found to be more convenient.
The relation between
(z); �(z) and (z) is given by


(z) = ��

 
R2

z

!
� R2

z
��0

 
R2

z

!
� R2

z2
� 

 
R2

z

!
; (A3)

whereR is the radius of the circle on which the cracks lie.
Substituting value of (z) from Equation (A3) in Equation (A1) and (A2), we may now

express the stress and displacement components as

Prr + iPr� = �(z) + 


 
R2

�z

!
+ �z

�
�z

R2 �
1
z

�
 (z); (A4)

and

2�
@

@�
fei�(ur + iu�)g = iz

(
��(z) � 


 
R2

�z

!)
� �z

�
�z

R2 �
1
z

�
 (z): (A5)

Consider an infinite elastic plate cut along the arcLk (with end pointsak; bk), (k = 1;2; : : : ; n)
of one and the same circle of radiusR and centre (0,0). The rims of the crackLf= [Lk; k =
1;2; : : : ; ng are subjected to prescribed stressP�rr+ iP

�
r�. The superscript+ and� refer to the

values of the function att as it is approached from the ‘inner’(r < R) and from the ‘outer’
(r > R) region of the crack, respectively. Using Equation (A4), we obtain the following
Hilbert problems

�+(t) + 
�(t) = P+rr + ip+r�;

��(t) + 
+(t) = P�rr + ip�r�;
(A6)
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under the condition

lim
r�>R

�
e�i�

�
r

R2 �
1
r

�
 (z)

�
= 0 (A7)

and any point onL is denoted byt = R ei�.
The solution of (A6) in the absence of body forces and zero stresses at infinity may be

written as

�(z)� 
(z) =
1
�i

Z
L

q(t)

t� z
dt+D0 (A8)

and

�(z) + 
(z) =
1
�i

Z
L

X(t)p(t)

t� z
dt+

1
X(z)

�
Pn(z) +

D1

z
+
D2

z2

�
; (A9)

where

X(z) =
nY

k=1

(z � ak)
1=2(z � bk)

1=2; (A10)

q(t) = 1
2(P

+

rr � P�rr) +
1
2i(P

+

r� � P�r�); (A11)

p(t) = 1
2(P

+

rr + P�rr) +
1
2i(P

+

r� + P�r�): (A12)

Pn(z) = c0z
n + c1z

n�1 + � � �+ cn: (A13)

The constantsD0;D1;D2 andCi(i = 1;2; : : : ; n) are determined from the boundary condi-
tions of the problem under consideration and single valuedness of the displacements at the
crack rims.

The stress intensity factor at the crack tipz = z1 is determined from the relation [18,
pp. 97]

K1 � iK2 = 2
p

2� lim
z!Z1

f(z � z1)
1=2�(z)g: (A14)

The relative crack-face opening displacement of crack face,V (t), may be defined as

V (t) = v�(t)� v+(t); (A15)

wherev�(t) = limz"t v(z); v+(t) = limz#t v(z) andt = Rei�. Introducing

v(z) = ei�f(ur(z) + iu�(z)g (A16)

and substituting values of�(z) and
(z) = �(z)�D0 (sinceq(t) = 0) in (A5), we obtain

V 0(t) =
�+ 1

2�
f��(t)� �+(t)g: (A17)
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V (t) is then obtained by integration of Equation (A17), and henceur, the crack-face opening
displacement, is obtained.
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